
Copyright Tim Kelly 2016, not to be reproduced without permission

Fundamental Principles of
Software Safety Assurance

Tim Kelly

tim.kelly@york.ac.uk

Copyright Tim Kelly 2016, not to be reproduced without permission

Context
• Lack of agreement in the details of requirements of software

safety assurance standards has long been recognised

• However, some common fundamental principles can be
observed

• Tension sometimes exists between those advocating
demonstrating compliance to standards as the principal
assurance approach and those that promote the production of
software assurance cases

• Often incorrectly presented as totally opposing alternative
approaches

Copyright Tim Kelly 2016, not to be reproduced without permission

4+1 Principles
• P1 - Software safety requirements shall be defined to address the

software contribution to system hazards.

• P2 - The intent of the software safety requirements shall be
maintained throughout requirements decomposition.

• P3 - Software safety requirements shall be satisfied.

• P4 - Hazardous behaviour of the software shall be identified and
mitigated.

• P4+1 - The confidence established in addressing the software safety
principles shall be commensurate to the contribution of the
software to system risk.

Copyright Tim Kelly 2016, not to be reproduced without permission

DO-178C
Principle 1

• Assumed starting point in DO-178B/C is that behavioural safety
requirements allocated to software have already been derived
by system level safety analysis performed in accordance with
ARP 4754A

• ARP4754A addresses the problem of validation of these
requirements

• ARP 4754A also defines the process for judging the
criticality of the contribution of software to system level
hazards and expresses this as an allocated software DAL

Copyright Tim Kelly 2016, not to be reproduced without permission

DO-178C
Principle 2

• strong emphasis on maintaining traceability through the
stages of software development

• recognises problem of validation of decomposition, e.g.
through requirements for review

• simply recording traceability information is necessary for
but insufficient

• need justification (cf. Rich Traceability)

Copyright Tim Kelly 2016, not to be reproduced without permission

DO-178C

Principle 3

• well addressed - verification evidence that addresses
the demonstration of requirements both under
normal conditions and fault conditions

• DO-178C admits a wider range of verification
techniques

Copyright Tim Kelly 2016, not to be reproduced without permission

DO-178C
Principle 4

• recognises that ‘Software design process activities could introduce
possible modes of failure into the software or, conversely, preclude
others’ and ‘In such cases, additional data should be defined as derived
requirements and provided to the system safety assessment process’.

• Removal of errors leading to unacceptable failure conditions as an
objective of testing

• Acknowledges that ‘The effects of derived requirements on safety related
requirements are determined by the system safety assessment process’.

• However, …

Copyright Tim Kelly 2016, not to be reproduced without permission

DO-178C

Principle 4+1

• captured through the mechanism of DALs that tailor
requirement for the demonstration of the objectives
of the standard according to criticality

Copyright Tim Kelly 2016, not to be reproduced without permission

IEC 61508

Principle 1

• clearly defines safety lifecycle that describes
generation of safety requirements from hazard
analysis

• Two Aspects: Functional Requirements + Integrity
Requirements

Copyright Tim Kelly 2016, not to be reproduced without permission

IEC 61508

Principle 2

• process of requirements decomposition and
allocation addressed across Parts 1, 2 (concerning
requirements allocated to hardware) and 3
(concerning requirements allocated to software)

• validation and justification of this decomposition and
allocation receives less attention

Copyright Tim Kelly 2016, not to be reproduced without permission

IEC 61508

Principle 3

• strongly emphasised , e.g. in Part 3 requirements must
be demonstrably satisfied

• described as ‘software safety validation’

• choice of techniques guided by techniques
recommended for SIL

Copyright Tim Kelly 2016, not to be reproduced without permission

IEC 61508
Principle 4

• weakly supported

• software development lifecycle defined in Part 3 assumes a
conventional ‘flow down’ of software requirements into
implementation (and test)

• little mention of the potential for emergent hazardous
behaviours as a result of design commitments made during
software development

• no specific mention of the activity of software hazard analysis

Copyright Tim Kelly 2016, not to be reproduced without permission

IEC 61508

Principle 4+1

• addressed the mechanism of SILs that tailor guidance
on design measures (e.g. architectural features) and
development and assurance techniques (e.g. types of
testing) according to the criticality of the software

Copyright Tim Kelly 2016, not to be reproduced without permission

ISO 26262

Principle 1

• clearly defines safety lifecycle that
describes generation of safety
requirements from hazard analysis

• Two Aspects: Functional
(Behavioural) Requirements +
Integrity (ASIL) Requirements

Copyright Tim Kelly 2016, not to be reproduced without permission

ISO 26262
Principle 2

• process of requirements
decomposition and allocation
addressed across Parts 3, 4, 5
(concerning requirements allocated
to hardware) and 6 (concerning
requirements allocated to
software)

• (Brief) mention of validation (e.g.
checking whether Functional Safety
Requirements address safety goal

Copyright Tim Kelly 2016, not to be reproduced without permission

ISO 26262
Principle 3

• strongly emphasised , e.g. in Part 6 requirements must be
demonstrably satisfied for software

• 6-11 Verification of Software Safety Requirements

• alongside unit, integration test etc.

• robustness testing (e.g. fault injection also mentioned)

• choice of techniques guided by techniques recommended for
ASIL

Copyright Tim Kelly 2016, not to be reproduced without permission

ISO 26262
Principle 4

• software development lifecycle defined in Part 6 assumes a
conventional ‘flow down’ of software requirements into
implementation

• Some mention of the potential for emergent hazardous
behaviours as a result of design commitments made during
software development (esp. in architecture)

•

• There is mention of the safety analysis for software

Copyright Tim Kelly 2016, not to be reproduced without permission

ISO 26262
Principle 4+1

• addressed the mechanism of SILs that tailor guidance
on development and assurance techniques (e.g. types
of testing) according to the criticality of the software

• Example (from Part 6):

Copyright Tim Kelly 2016, not to be reproduced without permission

Observations
• P1-3 can be observed to be at the heart of the standards

• P4 is less well addressed

• However, they discuss the potential for systematic error
introduction within the software development lifecycle

• Standards attempt to address P4+1 through DALs and SILs

• differences in allocation and what is varied

• lack of a significant evidence-base that demonstrates that either
approach to varying confidence can be easily correlated with
achieved risk reduction

Copyright Tim Kelly 2016, not to be reproduced without permission

Generic vs. Specific Application
of Principles

• intent of principles is not that they are addressed generically
(e.g. by appeal to generic processes or adherence to
standards)

• should be evidenced specifically

• requirements and processes of a standard may be capable of
demonstrating principles, but may still fall short in practice

• consider ‘Requirements Review’

• application of standards cannot be considered in a tokenistic
sense, as a talisman of confidence

Copyright Tim Kelly 2016, not to be reproduced without permission

Generic vs. Specific Application
of Principles

• Significant issue re: P4+1

• Standards established a general set of requirements for varying
requirements, processes and techniques according to an abstract level of
required confidence

• Generality is potentially a problem

• Is it what’s required in a specific case - e.g. applicability of MCDC metrics?

• Opportunity cost of doing something that doesn’t add to confidence

• Some mechanisms to address:

• PSAC, SAS in DO-178C, Justification of selection from amongst ‘loose’ SIL
recommendations in IEC 61508

Copyright Tim Kelly 2016, not to be reproduced without permission

How Principles relate to
Assurance Cases

• Example definition:

• ‘a structured argument, supported by a body of evidence, that provides a
compelling, comprehensible and valid case that the software is safe when
forming part a system for a given application in a given environment.’

• does not describe how a compelling, comprehensible and valid case is to be
made,

• Generic Nature is both weakness and strength

• Weakness: many possible candidates - e.g. pure appeal to process or
adherence to standard (compliance / conformance argument)

• Strength: the very requirement for an assurance case is a requirement for a
developer to state their case for their specific software development

Copyright Tim Kelly 2016, not to be reproduced without permission

Worst Case - Best Case

• Worst - fail to cover the 4+1 principles to the same
extent as the two standards described (we are to
ignore standards at our peril!)

• Best - addressing all of the relevant requirements and
recommendations of standards, and in addition
presenting compelling arguments for the specific
enactment of those standards

Copyright Tim Kelly 2016, not to be reproduced without permission

Assurance Case Guidance
• Def Stan 00-56 Issue 4 Part 1 re: P2

• ‘The means of recording [requirements] traceability is not prescribed;
however, traceability should be demonstrated within the Safety Case.’

• Def Stan 00-56 Issue 4 Part 2 re: P3 and P4

• ‘Demonstration of safety includes finding the credible evidence that shows
that the derived safety requirements are correctly implemented and hence
that safety requirements are satisfied.’

• ‘Evidence should demonstrate that implementation has not adversely
affected the safety of the system.’

• Pattern based Guidance that explicitly addresses principles (Hawkins et al.
2013)

Copyright Tim Kelly 2016, not to be reproduced without permission

P4+1 & Assurance Cases
• Remains a challenge

• Alternative approaches proposed:

• Quantitative reasoning about Possibility of Perfection - Littlewood
and Rushby

• Baconian philosophy (incl. ‘defeaters’) - Goodenough and Weinstock

• Risk + Confidence Argument approach (incl. concept of ‘assurance
deficits’) York + Virginia

• explicit and specific treatment of Principle 4+1

• Consider P3 Risk argument

Copyright Tim Kelly 2016, not to be reproduced without permission

Complementarity
• Existing software safety and assurance standards represent a substantial

‘Body of Knowledge’ (BOK)

• e.g. coverage requirements of DO-178B/C can be seen as important
for ‘flushing out’ implementation errors in the software development
process

• If nothing else, should be used as an informative checklist

• e.g. a (product oriented) risk mitigation requirement within in a
standard that is not addressed in an assurance case could require
justification

• Challenge is sometimes to understand the (risk reduction) rationale
behind some of their requirements, see (Holloway 2013)

Copyright Tim Kelly 2016, not to be reproduced without permission Copyright Tim Kelly 2016, not to be reproduced without permission

Targeting 
Assurance Case Effort

• Many standards provide the template for the technical risk argument
needed at the core of any software assurance case (forming central pillar
of response to P1,2 & 3)

• Standards also provide general requirements and recommendations for
the avoidance of potentially hazardous errors and anomalous behaviour
(P4)

• Standards also provide general guidance on how effort should be tailored
according to risk (P4+1)

• Confidence can be lost in the (lack of) justification of the specific
instantiation of these template structures and general guidance

• Assurance Cases can help here!

Copyright Tim Kelly 2016, not to be reproduced without permission

Example: What’s
the ‘core’ risk

argument with a
ISO 26262 project?

Verification
Evidence

Copyright Tim Kelly 2016, not to be reproduced without permission

But, where’s
the confidence

argument?

Verification
Evidence

• Having a 26262
compliant ‘structure’ isn’t
enough

• Safety is ‘won and lost’ in
the specific details of …

• safety goals, functional
safety requirements,
means of testing

Why?

Why?

Why?

Why?

Why?

Why?

Why?

Copyright Tim Kelly 2016, not to be reproduced without permission

Targeting 
Assurance Case Effort

• P1 - assurance cases are well suited to the (inevitably subjective)
justification of the adequacy of the identified software safety requirements

• P2 - well suited to the hard problem of the justification of maintenance of
intent in traceability structures

• P3 - well suited to the justification of the adequacy of evidence (e.g. the
appropriateness and trustworthiness of specific forms of evidence for
requirements satisfaction)

• P4 - usefully targeted at the justification of the management of
unintentionally hazardous side effects of otherwise intentional design
commitments

• P4+1 - directly relates to the notion of a confidence / meta argument

Copyright Tim Kelly 2016, not to be reproduced without permission

Summary
• Principles based evaluation of software safety standards

• P1-3 served well, P4 & 4+1 not so well

• Standards often provide the ‘template’ for a primary risk argument in an
assurance case

• Assurance Cases shouldn’t duplicate aspects covered well by standards, and
shouldn’t ignore the BOK

• Standards suffer from problems relating to specific enactment and judgement

• Standards can’t remove (subjective) judgement

• Assurance cases are good at explicitly representing and recording judgements

• Crass to say it’s either-or

